Robustifying and simplifying high-dimensional regression with applications to yearly stock return and telematics data
Year of publication: |
2024
|
---|---|
Authors: | Marchese, Malvina ; Martinez Miranda, Maria Dolores ; Nielsen, Jens Perch ; Scholz, Michael |
Published in: |
Financial innovation : FIN. - Heidelberg : SpringerOpen, ISSN 2199-4730, ZDB-ID 2824759-0. - Vol. 10.2024, Art.-No. 138, p. 1-16
|
Subject: | Forecasting | Non‑linear prediction | Stock returns | Dimension reduction | Telematics | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Regressionsanalyse | Regression analysis | Börsenkurs | Share price | Telekommunikation | Telecommunications |
-
Conditional variance forecasts for long-term stock returns
Mammen, Enno, (2019)
-
Predictability of Equity Returns over Different Time Horizons : A Nonparametric Approach
Chen, Qingqing, (2022)
-
Predictive Regressions under Arbitrary Persistence and Stock Return Predictability
Borup, Daniel, (2021)
- More ...
-
Do-validation for Kernel density estimation
Mammen, Enno, (2011)
-
In-sample forecasting applied to reserving and mesothelioma mortality
Mammen, Enno, (2015)
-
Calendar effect and in-sample forecasting
Mammen, Enno, (2021)
- More ...