ROLEX : a novel method for interpretable machine learning using robust local explanations
Year of publication: |
2023
|
---|---|
Authors: | Kim, Buomsoo ; Srinivasan, Karthik ; Kong, Sung Hye ; Kim, Jung Hee ; Shin, Chan Soo ; Ram, Sudha |
Published in: |
MIS quarterly. - Minneapolis, Minn : MISRC, ISSN 2162-9730, ZDB-ID 2068190-2. - Vol. 47.2023, 3, p. 1303-1332
|
Subject: | Healthcare predictive analytics | explainable artificial intelligence | machine learning interpretability | healthcare information systems | Künstliche Intelligenz | Artificial intelligence | Gesundheitswesen | Health care system | Gesundheitsversorgung | Health care | Prognoseverfahren | Forecasting model |
-
Nti, Isaac Kofi, (2023)
-
Lin, Yu-Kai, (2017)
-
First, do no harm : predictive analytics to reduce in-hospital adverse events
Lin, Yu-Kai, (2021)
- More ...
-
Srinivasan, Karthik, (2005)
-
Srinivasan, Karthik, (2007)
-
Jiang, Jinhang, (2021)
- More ...