Scenario generation for financial data with a machine learning approach based on realized volatility and copulas
Year of publication: |
2024
|
---|---|
Authors: | Mesquita, Caio Mário ; Valle, Cristiano Arbex ; Pereira, Adriano César Machado |
Published in: |
Computational economics. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9974, ZDB-ID 1477445-8. - Vol. 63.2024, 5, p. 1879-1919
|
Subject: | Machine learning | Supervised learning | Realized volatility | Portfolio optimisation | Künstliche Intelligenz | Artificial intelligence | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Portfolio-Management | Portfolio selection | Multivariate Verteilung | Multivariate distribution | Finanzmarkt | Financial market | Kapitaleinkommen | Capital income | Lernen | Learning | Lernprozess | Learning process |
-
Asset return prediction via machine learning
Zhang, Liangliang, (2019)
-
Asset returns in deep learning methods : an empirical analysis on SSE 50 and CSI 300
Li, Weiping, (2020)
-
Predicting the environmental impact of financial development with machine learning algorithms
Kartal, Burcu, (2025)
- More ...
-
Portfolio optimisation : bridging the gap between theory and practice
Valle, Cristiano Arbex, (2025)
-
Valle, Cristiano Arbex, (2014)
-
Heuristic and exact algorithms for a min-max selective vehicle routing problem
Valle, Cristiano Arbex, (2011)
- More ...