Semi-discrete optimal transport : a solution procedure for the unsquared Euclidean distance case
Year of publication: |
2020
|
---|---|
Authors: | Hartmann, Valentin ; Schuhmacher, Dominic |
Subject: | Monge-Kantorovich problem | Spatial resource allocation | Wasserstein metric | Weighted Voronoi tessellation | Theorie | Theory | Allokation | Allocation |
-
Semi-discrete optimal transport: a solution procedure for the unsquared Euclidean distance case
Hartmann, Valentin, (2020)
-
Remarks on Afriat's theorem and the Monge-Kantorovich problem
Kolesnikov, Alexander V., (2013)
-
From Mahalanobis to Bregman via Monge and Kantorovich towards a "general generalised distance"
Hallin, Marc, (2018)
- More ...
-
Semi-discrete optimal transport: a solution procedure for the unsquared Euclidean distance case
Hartmann, Valentin, (2020)
-
Multivariate log-concave distributions as a nearly parametric model
Schuhmacher, Dominic, (2011)
-
Consistency of multivariate log-concave density estimators
Schuhmacher, Dominic, (2010)
- More ...