Semi-discrete optimal transport: a solution procedure for the unsquared Euclidean distance case
Year of publication: |
2020
|
---|---|
Authors: | Hartmann, Valentin ; Schuhmacher, Dominic |
Published in: |
Mathematical Methods of Operations Research. - Berlin, Heidelberg : Springer, ISSN 1432-5217. - Vol. 92.2020, 1, p. 133-163
|
Publisher: |
Berlin, Heidelberg : Springer |
Subject: | Monge–Kantorovich problem | Spatial resource allocation | Wasserstein metric | Weighted Voronoi tessellation |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Article |
Language: | English |
Other identifiers: | 10.1007/s00186-020-00703-z [DOI] |
Classification: | D18 - Consumer Protection ; N20 - Financial Markets and Institutions. General, International, or Comparative |
Source: |
-
Semi-discrete optimal transport : a solution procedure for the unsquared Euclidean distance case
Hartmann, Valentin, (2020)
-
Young Consumer Protection in the 'Millennial' Age
Nelson, Eboni S., (2011)
-
Peterson, Christopher Lewis, (2013)
- More ...
-
Semi-discrete optimal transport : a solution procedure for the unsquared Euclidean distance case
Hartmann, Valentin, (2020)
-
Multivariate log-concave distributions as a nearly parametric model
Schuhmacher, Dominic, (2011)
-
Consistency of multivariate log-concave density estimators
Schuhmacher, Dominic, (2010)
- More ...