Semiparametric Bayesian inference for time-varying parameter regression models with stochastic volatility
Year of publication: |
January 2017
|
---|---|
Authors: | Dimitrakopoulos, Stefanos |
Published in: |
Economics letters. - Amsterdam [u.a.] : Elsevier, ISSN 0165-1765, ZDB-ID 717210-2. - Vol. 150.2017, p. 10-14
|
Subject: | Dirichlet process | Markov chain Monte Carlo | Stochastic volatility | Time-varying parameters | Inflation | Markov-Kette | Markov chain | Volatilität | Volatility | Stochastischer Prozess | Stochastic process | Monte-Carlo-Simulation | Monte Carlo simulation | Bayes-Statistik | Bayesian inference | Schätzung | Estimation | Schätztheorie | Estimation theory | Nichtparametrisches Verfahren | Nonparametric statistics |
-
Dimitrakopoulos, Stefanos, (2017)
-
Ignatieva, Ekaterina, (2015)
-
A simple efficient moment-based estimator for the stochastic volatility model
Ahsan, Nazmul, (2019)
- More ...
-
Volatility models versus intensity models: analogy and differences
Aknouche, Abdelhakim, (2024)
-
Periodicity in Bitcoin returns: A time-varying volatility approach
Aknouche, Abdelhakim, (2018)
-
Ordinal-response models for irregularly spaced transactions: A forecasting exercise
Dimitrakopoulos, Stefanos, (2020)
- More ...