Semiparametric GARCH models with long memory applied to value-at-risk and expected shortfall
Year of publication: |
2022
|
---|---|
Authors: | Letmathe, Sebastian ; Feng, Yuanhua ; Uhde, André |
Published in: |
Journal of risk. - London : Infopro Digital Risk, ISSN 1465-1211, ZDB-ID 1476260-2. - Vol. 25.2022, 2, p. 75-105
|
Subject: | long memory | generalized autoregressive conditional heteroscedasticity (GARCH) models | value-at-risk (VaR) | expected shortfall (ES) | traffic-light test | backtesting | ARCH-Modell | ARCH model | Risikomaß | Risk measure | Zeitreihenanalyse | Time series analysis | Schätztheorie | Estimation theory | Risikomanagement | Risk management | Aktienindex | Stock index | Kapitaleinkommen | Capital income | Volatilität | Volatility | Statistischer Test | Statistical test | Schätzung | Estimation |
-
Realized quantity extended conditional autoregressive value-at-risk models
Götz, Pit, (2023)
-
Estimation risk for value-at-risk and expected shortfall
Kabaila, Paul, (2018)
-
Buczyński, Mateusz, (2022)
- More ...
-
Semiparametric GARCH Models with Long Memory Applied to Value at Risk and Expected Shortfall
Letmathe, Sebastian, (2021)
-
Semiparametric GARCH models with long memory applied to value at risk and expected shortfall
Letmathe, Sebastian, (2021)
-
An extended exponential SEMIFAR model with application in R
Letmathe, Sebastian, (2021)
- More ...