Sequential quadratically constrained quadratic programming norm-relaxed algorithm of strongly sub-feasible directions
In this paper, we present a sequential quadratically constrained quadratic programming (SQCQP) norm-relaxed algorithm of strongly sub-feasible directions for the solution of inequality constrained optimization problems. By introducing a new unified line search and making use of the idea of strongly sub-feasible direction method, the proposed algorithm can well combine the phase of finding a feasible point (by finite iterations) and the phase of a feasible descent norm-relaxed SQCQP algorithm. Moreover, the former phase can preserve the "sub-feasibility" of the current iteration, and control the increase of the objective function. At each iteration, only a consistent convex quadratically constrained quadratic programming problem needs to be solved to obtain a search direction. Without any other correctional directions, the global, superlinear and a certain quadratic convergence (which is between 1-step and 2-step quadratic convergence) properties are proved under reasonable assumptions. Finally, some preliminary numerical results show that the proposed algorithm is also encouraging.
Year of publication: |
2010
|
---|---|
Authors: | Jian, Jin-Bao ; Tang, Chun-Ming ; Zheng, Hai-Yan |
Published in: |
European Journal of Operational Research. - Elsevier, ISSN 0377-2217. - Vol. 200.2010, 3, p. 645-657
|
Publisher: |
Elsevier |
Keywords: | Optimization Quadratically constrained quadratic programming SQCQP superlinear convergence Norm-relaxed algorithm |
Saved in:
Saved in favorites
Similar items by person
-
Jian, Jin-Bao, (2010)
-
Jian, Jin-bao, (2009)
-
Tang, Chun-ming, (2012)
- More ...