Shape-constrained kernel-weighted least squares : estimating production functions for Chilean manufacturing industries
Year of publication: |
2020
|
---|---|
Authors: | Yagi, Daisuke ; Chen, Yining ; Johnson, Andrew L. ; Kuosmanen, Timo |
Published in: |
Journal of business & economic statistics : JBES ; a publication of the American Statistical Association. - Abingdon : Taylor & Francis, ISSN 1537-2707, ZDB-ID 2043744-4. - Vol. 38.2020, 1, p. 43-54
|
Subject: | Kernel estimation | Local polynomials | Multivariate convex regression | Nonparametric regression | Shape constraints. | Schätztheorie | Estimation theory | Produktionsfunktion | Production function | Regressionsanalyse | Regression analysis | Nichtparametrisches Verfahren | Nonparametric statistics | Industrie | Manufacturing industries | Chile | Kleinste-Quadrate-Methode | Least squares method | Schätzung | Estimation | Nichtparametrische Schätzung | Nonparametric estimation |
-
Robustified expected maximum production frontiers
Daouia, Abdelaati, (2018)
-
Estimation of a varying coefficient, fixed-effects Cobb–Douglas production function in levels
Wang, Taining, (2022)
-
Nonparametric estimation of a periodic sequence in the presence of a smooth trend
Vogt, Michael, (2012)
- More ...
-
Modeling joint production of multiple outputs in StoNED : directional distance function approach
Kuosmanen, Timo, (2017)
-
A review on tourist satisfaction of tourism destinations
Chen, Yining, (2013)
-
Kim, Yoo Ri, (2022)
- More ...