Short-term prediction of passenger volume for urban rail systems : a deep learning approach based on smart-card data
| Year of publication: |
2021
|
|---|---|
| Authors: | Yang, Xin ; Xue, Quichi ; Ding, Meiling ; Wu, Jianjun ; Gao, Ziyou |
| Published in: |
International journal of production economics. - Amsterdam [u.a.] : Elsevier, ISSN 0925-5273, ZDB-ID 1092526-0. - Vol. 231.2021, p. 1-12
|
| Subject: | Urban rail transit | Passenger volume prediction | Deep learning | Sp-LSTM | Schienenpersonennahverkehr | Prognoseverfahren | Forecasting model | Schienenpersonenverkehr | Passenger rail transport | Stadtverkehr | Urban transport |
-
Passenger route choice model and algorithm in the urban rail transit network
Ke, Qiao, (2013)
-
Shang, Pan, (2021)
-
Study on ticket pricing-system for Urban Rail Transit (URT) projects in China
Hua, Guanguan, (2011)
- More ...
-
First-train timing synchronisation using multi-objective optimisation in urban transit networks
Guo, Xin, (2019)
-
Resilience assessment of intercity transport in a two-city system
Wang, Junjie, (2024)
-
Robust bus bridging service design under rail transit system disruptions
Liang, Jinpeng, (2019)
- More ...