Signal Extraction in Continuous Time and the Generalized Hodrick- Prescott Filter
A widely used filter to extract a signal in a time series, in particular in the business cycle analysis, is the Hodrick-Prescott filter. The model that underlies the filter considers the data series as the sum of two unobserved component (signal and non signal) and a smoothing parameter which for quarterly series is set to a specified value. This paper proposes a generalization of the Hodrick-Prescott filter to a continuous time support, using the well-established relationship between cubic splines and state-space models. The spline formulation of the filter leads to a state space model with several practical advantages: first, the smoothing parameter can be either pre-specified or estimated as the other parameters in the model; second, the unobserved components can be modelled by the addition of particular ARIMA structures; lastly the model is capable of working in the presence of missing values or for irregular surveys. Monte Carlo experiments support these considerations.