Significance, relevance and explainability in the machine learning age : an econometrics and financial data science perspective
Year of publication: |
2021
|
---|---|
Authors: | Hoepner, Andreas G. F. ; McMillan, David G. ; Vivian, Andrew ; Wese Simen, Chardin |
Subject: | explainability | explainable artificial intelligence (xai) | neural networks | regressions | relevance | significance | Künstliche Intelligenz | Artificial intelligence | Neuronale Netze | Neural networks | Regressionsanalyse | Regression analysis | Ökonometrie | Econometrics | Prognoseverfahren | Forecasting model |
-
Neural nets for indirect inference
Creel, Michael D., (2016)
-
Combination forecasts of tourism demand with machine learning models
Claveria, Oscar, (2016)
-
A novel model structured on predictive churn methods in a banking organization
Silveira, Leonardo José, (2021)
- More ...
-
Financial Data Science : The Birth of a New Financial Research Paradigm Complementing Econometrics?
Brooks, Chris, (2020)
-
Financial data science : the birth of a new financial research paradigm complementing econometrics?
Brooks, Chris, (2019)
-
Brooks, Chris, (2019)
- More ...