EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Smooth Convex Approximation to...
  • More details
Cover Image

Smooth Convex Approximation to the Maximum Eigenvalue Function

Year of publication:
2004
Authors: Chen, Xin ; Qi, Houduo ; Qi, Liqun ; Teo, Kok-Lay
Published in:
Journal of Global Optimization. - Springer. - Vol. 30.2004, 2, p. 253-270
Publisher: Springer
Subject: Matrix representation | spectral function | Symmetric function | Tikhonov regularization
Saved in:
  • More details
Extent:
text/html
Type of publication: Article
Source:
RePEc - Research Papers in Economics
Persistent link: https://ebvufind01.dmz1.zbw.eu/10008925235
    • EndNote
    • BibTeX
    • Zotero, Mendeley, RefWorks, ...
    • Text
Saved in favorites
    Similar items by subject
    • A modification of the <Emphasis FontCategory="NonProportional">DIRECT method for Lipschitz global optimization for a symmetric function

      Grbić, Ratko, (2013)

    • Spectral functions on Jordan algebras : differentiability and convexity properties

      BAES, Michel, (2004)

    • A study of convex convex-composite functions via infimal convolution with applications

      Burke, James V., (2021)

    • More ...
    Similar items by person
    • Smooth Convex Approximation to the Maximum Eigenvalue Function

      Chen, Xin, (2004)

    • Special issue International Conference on Optimization: Techniques and Applications (ICOTA), December 15 - 17, 2001, Hong Kong

      Li, Duan, (2005)

    • Stability Analysis of Gradient-Based Neural Networks for Optimization Problems

      Han, Qiaoming, (2001)

    • More ...
    A service of the
    zbw
    • Sitemap
    • Plain language
    • Accessibility
    • Contact us
    • Imprint
    • Privacy

    Loading...