Smooth Value Function with Applications in Wealth-CVaR Efficient Portfolio and Turnpike Property
In this paper we continue the study of Bian-Miao-Zheng (2011) and extend the results there to a more general class of utility functions which may be bounded and non-strictly-concave and show that there is a classical solution to the HJB equation with the dual control method. We then apply the results to study the efficient frontier of wealth and conditional VaR (CVaR) problem and the turnpike property problem. For the former we construct explicitly the optimal control and discuss the choice of the optimal threadshold level and illustrate that the wealth and the CVaR are positively correlated. For the latter we give a simple proof to the turnpike property of the optimal policy of long-run investors and generalize the results of Huang-Zariphopoulou (1999).
Year of publication: |
2012-12
|
---|---|
Authors: | Bian, Baojun ; Zheng, Harry |
Institutions: | arXiv.org |
Saved in:
freely available
Saved in favorites
Similar items by person
-
Turnpike Property and Convergence Rate for an Investment Model with General Utility Functions
Bian, Baojun, (2014)
-
Bian, Baojun, (2012)
-
Smooth Value Functions for a Class of Nonsmooth Utility Maximization Problems
Bian, Baojun, (2010)
- More ...