Solving parallel machines job-shop scheduling problems by an adaptive algorithm
Year of publication: |
2014
|
---|---|
Authors: | Gholami, Omid ; Sotskov, Jurij Nazarovič |
Published in: |
International journal of production research. - London : Taylor & Francis, ISSN 0020-7543, ZDB-ID 160477-6. - Vol. 52.2014, 13 (1.7.), p. 3888-3904
|
Subject: | flexible job-shop | identical machines | adaptive algorithm | learning | Algorithmus | Algorithm | Scheduling-Verfahren | Scheduling problem | Produktionssteuerung | Production control | Theorie | Theory | Künstliche Intelligenz | Artificial intelligence | Lernprozess | Learning process | Flexibles Fertigungssystem | Flexible manufacturing system |
-
A literature review of reinforcement learning methods applied to job-shop scheduling problems
Zhang, Xiehui, (2025)
-
Yazdani, M., (2019)
-
Maximizing the service level on the makespan in the stochastic flexible job-shop scheduling problem
Flores-Gómez, Mario, (2023)
- More ...
-
Mixed graph model and algorithms for parallel-machine job-shop scheduling problems
Sotskov, Jurij Nazarovič, (2017)
-
Fuzzy stochastic Data Envelopment Analysis with application to NATO enlargement problem
Ebrahimnejad, Ali, (2019)
-
On the calculation of the stability radius of an optimal or an approximate schedule
Sotskov, Jurij Nazarovič, (1997)
- More ...