Some matheuristic algorithms for multistage stochastic optimization models with endogenous uncertainty and risk management
Year of publication: |
2020
|
---|---|
Authors: | Escudero, Laureano F. ; Garín, María Araceli ; Monge, Juan F. ; Unzueta Inchaurbe, Aitziber |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 285.2020, 3 (16.9.), p. 988-1001
|
Subject: | Stochastic programming | Exogenous and endogenous uncertainties | Time-consistent stochastic dominance | Mixed 0-1 bilinear optimization | Scenario cluster-based decomposition algorithms | Theorie | Theory | Stochastischer Prozess | Stochastic process | Mathematische Optimierung | Mathematical programming | Risiko | Risk | Risikomanagement | Risk management | Algorithmus | Algorithm | Dynamische Optimierung | Dynamic programming | Entscheidung unter Unsicherheit | Decision under uncertainty | Portfolio-Management | Portfolio selection | Dekompositionsverfahren | Decomposition method |
-
Zhang, Weini, (2016)
-
Multilevel optimization modeling for risk-averse stochastic programming
Eckstein, Jonathan, (2016)
-
Risk neutral reformulation approach to risk averse stochastic programming
Liu, Rui Peng, (2020)
- More ...
-
Escudero, Laureano F., (2018)
-
Scenario cluster decomposition of the Lagrangian dual in two-stage stochastic mixed 0-1 optimization
Escudero, Laureano F., (2013)
-
Scenario cluster lagrangian decomposition in two stage stochastic mixed 0-1 optimization
Escudero, Laureano F., (2012)
- More ...