Some New Statistics for Testing Hypotheses in Parametric Models, ,
The paper deals with simple and composite hypotheses in statistical models with i.i.d. observations and with arbitrary families dominated by[sigma]-finite measures and parametrized by vector-valued variables. It introduces[phi]-divergence testing statistics as alternatives to the classical ones: the generalized likelihood ratio and the statistics of Wald and Rao. It is shown that, under the assumptions of standard type about hypotheses and model densities, the results about asymptotic distribution of the classical statistics established so far for the counting and Lebesgue dominating measures (discrete and continuous models) remain true also in the general case. Further, these results are extended to the[phi]-divergence statistics with smooth convex functions[phi]. The choice of[phi]-divergence statistics optimal from the point of view of power is discussed and illustrated by several examples.
Year of publication: |
1997
|
---|---|
Authors: | Morales, D. ; Pardo, L. ; Vajda, I. |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 62.1997, 1, p. 137-168
|
Publisher: |
Elsevier |
Keywords: | parametric models simple and composite hypotheses asymptotic distributions of test statistics generalized likelihood ratio Wald's statistic Rao's statistic divergence statistics |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
ON SIZE INCREASE FOR GOODNESS OF FIT TESTS WHEN OBSERVATIONS ARE POSITIVELY DEPENDENT
Molina, I., (2002)
-
Estimation - Minimum divergence estimators based on grouped data
Menéndez, M., (2001)
-
Menéndez, M.L., (1998)
- More ...