Sparse and robust normal and t- portfolios by penalized Lq-likelihood minimization
Year of publication: |
2016
|
---|---|
Authors: | Giuzio, Margherita ; Ferrari, Davide ; Paterlini, Sandra |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 250.2016, 1 (1.4.), p. 251-261
|
Subject: | Investment analysis | Penalized least squares | q-entropy | Sparsity | Index tracking | Portfolio-Management | Portfolio selection | Kleinste-Quadrate-Methode | Least squares method | Aktienindex | Stock index | Finanzanalyse | Financial analysis | Schätztheorie | Estimation theory | Robustes Verfahren | Robust statistics |
-
Ranking of investment funds : acceptability versus robustness
Rossello, Damiano, (2015)
-
Heuristic methods for stock selection and allocation in an index tracking problem
Ivaşcu, Codruę Florin, (2022)
-
State-dependent stock selection in index tracking : a machine learning approach
Bradrania, Reza, (2022)
- More ...
-
Sparse and Robust Normal and t-Portfolios by Penalized Lq-Likelihood Minimization
Ferrari, Davide, (2017)
-
The Maximum Lq-Likelihood Method: an Application to Extreme Quantile Estimation in Finance
Ferrari, Davide, (2007)
-
The Maximum Lq-Likelihood Method: an Application to Extreme Quantile Estimation in Finance
Ferrari, Davide, (2007)
- More ...