Sparse Bayesian variable selection in probit model for forecasting U.S. recessions using a large set of predictors
Year of publication: |
April 2018
|
---|---|
Authors: | Yang, Aijun ; Xiang, Ju ; Yang, Hongqiang ; Jinguan, Lin |
Published in: |
Computational economics. - Dordrecht [u.a.] : Springer, ISSN 0927-7099, ZDB-ID 1142021-2. - Vol. 51.2018, 4, p. 1123-1138
|
Subject: | Sparse Bayesian variable selection | Correlation prior | Probit model | Forecasting U.S. recessions | Probit-Modell | Bayes-Statistik | Bayesian inference | USA | United States | Prognoseverfahren | Forecasting model | Konjunktur | Business cycle | Wirtschaftsprognose | Economic forecast | Frühindikator | Leading indicator | Schätzung | Estimation |
-
Forecasting US recessions with macro factors
Fossati, Sebastian, (2013)
-
Forecasting US recessions with macro factors
Fossati, Sebastian, (2015)
-
Forecasting US recession with the economic policy uncertainty indexes of policy categories
Kurasawa, Kazutaka, (2017)
- More ...
-
Optimal buying at the global minimum in a regime switching model
Yang, Aijun, (2016)
-
Yang, Aijun, (2018)
-
Improving minimum-variance portfolios by alleviating overdispersion of eigenvalues
Shi, Fangquan, (2020)
- More ...