Sparse cluster analysis of large-scale discrete variables with application to single nucleotide polymorphism data
Currently, extreme large-scale genetic data present significant challenges for cluster analysis. Most of the existing clustering methods are typically built on the Euclidean distance and geared toward analyzing continuous response. They work well for clustering, e.g. microarray gene expression data, but often perform poorly for clustering, e.g. large-scale single nucleotide polymorphism (SNP) data. In this paper, we study the penalized latent class model for clustering extremely large-scale discrete data. The penalized latent class model takes into account the discrete nature of the response using appropriate generalized linear models and adopts the lasso penalized likelihood approach for simultaneous model estimation and selection of important covariates. We develop very efficient numerical algorithms for model estimation based on the iterative coordinate descent approach and further develop the expectation--maximization algorithm to incorporate and model missing values. We use simulation studies and applications to the international HapMap SNP data to illustrate the competitive performance of the penalized latent class model.
Year of publication: |
2013
|
---|---|
Authors: | Wu, Baolin |
Published in: |
Journal of Applied Statistics. - Taylor & Francis Journals, ISSN 0266-4763. - Vol. 40.2013, 2, p. 358-367
|
Publisher: |
Taylor & Francis Journals |
Saved in:
Saved in favorites
Similar items by person
-
Empirical null distribution-based modeling of multi-class differential gene expression detection
Cao, Xiting, (2013)
-
Parametric and Nonparametric FDR Estimation Revisited
Wu, Baolin, (2006)
-
A permutation test approach to the choice of size k for the nearest neighbors classifier
Lai, Yinglei, (2011)
- More ...