Sparse structures with LASSO through principal components : forecasting GDP components in the short-run
| Year of publication: |
2021
|
|---|---|
| Authors: | Jokubaitis, Saulius ; Celov, Dmitrij ; Leipus, Remigijus |
| Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 37.2021, 2, p. 759-776
|
| Subject: | Adaptive LASSO | GDP components | LASSO | Nowcasting | Principal components analysis | Relaxed LASSO | Variable selection | Prognoseverfahren | Forecasting model | Bruttoinlandsprodukt | Gross domestic product | Nationaleinkommen | National income | Theorie | Theory | Hauptkomponentenanalyse | Principal component analysis | Regressionsanalyse | Regression analysis | Wirtschaftsprognose | Economic forecast | Faktorenanalyse | Factor analysis |
-
Nowcasting Mexico's quarterly GDP using factor models and bridge equations
Gálvez-Soriano, Oscar de J., (2020)
-
Nowcasting quarterly GDP growth during the COVID-19 crisis using a monthly activity indicator
Hartigan, Luke, (2024)
-
Mixed-frequency approaches to nowcasting GDP : an application to Japan
Chikamatsu, Kyosuke, (2021)
- More ...
-
Larch, Leverage, and Long Memory
Giraitis, Liudas, (2010)
-
Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes
Leipus, Remigijus, (2007)
-
Aggregation of the random coefficient GLARCH (1,1) process
Giraitis, Liudas, (2010)
- More ...