Sparse structures with LASSO through principal components : forecasting GDP components in the short-run
Year of publication: |
2021
|
---|---|
Authors: | Jokubaitis, Saulius ; Celov, Dmitrij ; Leipus, Remigijus |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 37.2021, 2, p. 759-776
|
Subject: | Adaptive LASSO | GDP components | LASSO | Nowcasting | Principal components analysis | Relaxed LASSO | Variable selection | Prognoseverfahren | Forecasting model | Bruttoinlandsprodukt | Gross domestic product | Nationaleinkommen | National income | Theorie | Theory | Hauptkomponentenanalyse | Principal component analysis | Regressionsanalyse | Regression analysis | Wirtschaftsprognose | Economic forecast | Faktorenanalyse | Factor analysis |
-
Nowcasting Mexico's quarterly GDP using factor models and bridge equations
Gálvez-Soriano, Oscar de J., (2020)
-
Nowcasting quarterly GDP growth during the COVID-19 crisis using a monthly activity indicator
Hartigan, Luke, (2024)
-
Mixed-frequency approaches to nowcasting GDP : an application to Japan
Chikamatsu, Kyosuke, (2021)
- More ...
-
Stationary ARCH models : dependence structure and central limit theorem
Giraitis, Liudas, (2000)
-
An option-based approach to analyzing financial contracts with multiple indenture provisions
Rich, Don R., (1997)
-
On the power of R/S-type tests under contiguous and semi long memory alternatives
Giraitis, Liudas, (2002)
- More ...