Spatial prediction of apartment rent using regression-based and machine learning-based approaches with a large dataset
Year of publication: |
2024
|
---|---|
Authors: | Yoshida, Takahiro ; Murakami, Daisuke ; Seya, Hajime |
Published in: |
The journal of real estate finance and economics. - New York, NY [u.a.] : Springer Science + Business Media B.V., ISSN 1573-045X, ZDB-ID 2018867-5. - Vol. 69.2024, 1, p. 1-28
|
Subject: | Apartment Rent Price Prediction | Deep Neural Network (DNN) | Extreme Gradient Boosting (XGBoost) | Large Data | Nearest Neighbor Gaussian Processes (NNGP) | Random Forest (RF) | Prognoseverfahren | Forecasting model | Neuronale Netze | Neural networks | Miete | Rent | Künstliche Intelligenz | Artificial intelligence | Hedonischer Preisindex | Hedonic price index | Immobilienpreis | Real estate price | Theorie | Theory |
-
Bian, Tingbin, (2022)
-
Data intelligence and real estate : machines are the real game changer
Cajias, Marcelo, (2022)
-
Rent index forecasting through neural networks
Xu, Xiaojie, (2022)
- More ...
-
Parameter estimation of the spatial panel stochastic frontier model with random effects
Seya, Hajime, (2020)
-
Spatial analysis using big data : methods and urban applications
Yamagata, Yoshiki, (2020)
-
Parameter estimation in spatial econometric models with non-random missing data
Seya, Hajime, (2021)
- More ...