Spatial process-based transfer learning for prediction problems
Year of publication: |
2025
|
---|---|
Authors: | Murakami, Daisuke ; Kajita, Mami ; Kajita, Seiji |
Published in: |
Journal of geographical systems : geographical information, analysis, theory, and decision. - Berlin : Springer, ISSN 1435-5949, ZDB-ID 1481603-9. - Vol. 27.2025, 1, p. 147-166
|
Subject: | Crime | Gradient boosting | Spatial prediction | Spatial process | Transfer learning | Prognoseverfahren | Forecasting model | Kriminalität | Theorie | Theory | Räumliche Verteilung | Spatial distribution | Lernprozess | Learning process | Regionalökonomik | Regional economics | Räumliche Interaktion | Spatial interaction | Lernen | Learning |
-
K-nearest neighbors prediction and classification for spatial data
Ahmed, Mohamed-Salem, (2023)
-
A spatial one-sided error model to identify where unarrested criminals live
Puerta-Cuartas, Alejandro, (2025)
-
Spillover effects on homicides across Mexican municipalities : a spatial regime model approach
Flores, Miguel, (2014)
- More ...
-
Crime prediction by data-driven Green's function method
Kajita, Mami, (2020)
-
New Spatial Econometrics–Based Areal Interpolation Method
Tsutsumi, Morito, (2014)
-
Practical spatial statisics for areal interpolation
Murakami, Daisuke, (2012)
- More ...