Spatiotemporal forecasting models with and without a confounded covariate
Year of publication: |
2025
|
---|---|
Authors: | Jaya, I. Gede Nyoman Mindra ; Folmer, Henk |
Published in: |
Journal of geographical systems : geographical information, analysis, theory, and decision. - Berlin : Springer, ISSN 1435-5949, ZDB-ID 1481603-9. - Vol. 27.2025, 1, p. 113-146
|
Subject: | Bayesian forecasting model, confoundedness, simulation | Continuous response variable | COVID-19 | Discrete response variable | Full multivariate model | Mean-squared prediction error (MSPE) | Multivariate model | Spatiotemporal prediction model | Univariate model | Prognoseverfahren | Forecasting model | Simulation | Multivariate Analyse | Multivariate analysis | Schätztheorie | Estimation theory | Bayes-Statistik | Bayesian inference | Coronavirus |
-
A comparison of Range Value at Risk (RVaR) forecasting models
Müller, Fernanda Maria, (2024)
-
Structural analysis with Multivariate Autoregressive Index models
Carriero, Andrea, (2016)
-
Forecasting GDP growth : the economic impact of COVID-19 pandemic
Vrontos, Ioannis D., (2024)
- More ...
-
Jaya, I. Gede Nyoman Mindra, (2021)
-
Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung, Indonesia
Jaya, I. Gede Nyoman Mindra, (2020)
-
Jaya, I. Gede Nyoman Mindra, (2022)
- More ...