Stability of the Bayesian estimator of the Poisson mean under the inexactly specified gamma prior
The Bayesian estimator of the mean of the Poisson distribution under the gamma prior ([alpha]0, [beta]0) is stable (robust) in the sense that if the prior runs over the set {([alpha], [beta]0): [alpha][epsilon][[alpha]0-[delta], [alpha]0+[delta]]}, then the oscillat estimator with the oscillation O([delta]2) is constructed; it also minimizes the oscillation of the posterior risk when the shape parameter runs over a finite interval.
Year of publication: |
1991
|
---|---|
Authors: | Meczarski, Marek ; Zielinski, Ryszard |
Published in: |
Statistics & Probability Letters. - Elsevier, ISSN 0167-7152. - Vol. 12.1991, 4, p. 329-333
|
Publisher: |
Elsevier |
Keywords: | Bayesian estimation model violation robust estimation stable estimation |
Saved in:
Saved in favorites
Similar items by person
-
Meczarski, Marek, (1997)
-
Sequential estimation of the minimum of a random variable
Meczarski, Marek, (1985)
-
Uniform strong consistency of sample quantiles
Zielinski, Ryszard, (1998)
- More ...