Statistical inference for heterogeneous treatment effects discovered by generic machine learning in randomized experiments
| Year of publication: |
2025
|
|---|---|
| Authors: | Imai, Kosuke ; Li, Michael Lingzhi |
| Published in: |
Journal of business & economic statistics : JBES ; a publication of the American Statistical Association. - Abingdon : Taylor & Francis, ISSN 1537-2707, ZDB-ID 2043744-4. - Vol. 43.2025, 1, p. 256-268
|
| Subject: | Causal heterogeneity | Causal inference | Conditional average treatment effect | Cross-fitting | Randomization inference | Sample splitting | Kausalanalyse | Causality analysis | Induktive Statistik | Statistical inference | Künstliche Intelligenz | Artificial intelligence | Stichprobenerhebung | Sampling | Schätztheorie | Estimation theory | Experiment |
-
Imai, Kosuke, (2025)
-
When should you adjust standard errors for clustering?
Abadie, Alberto, (2017)
-
Blanco, German, (2019)
- More ...
-
Imai, Kosuke, (2025)
-
Chernozhukov, Victor, (2025)
-
Branch-and-price for prescriptive contagion analytics
Jacquillat, Alexandre, (2025)
- More ...