Statistical, machine learning and deep learning forecasting methods : comparisons and ways forward
Year of publication: |
2023
|
---|---|
Authors: | Makridakis, Spyros G. ; Spiliotis, Evangelos ; Assimakopoulos, V. ; Semenoglou, Artemios-Anargyros ; Mulder, Gary ; Nikolopoulos, Konstantinos |
Published in: |
Journal of the Operational Research Society. - London : Taylor and Francis, ISSN 1476-9360, ZDB-ID 2007775-0. - Vol. 74.2023, 3, p. 840-859
|
Subject: | artificial intelligence | Forecasting | neural networks | performance measurement | time series | Künstliche Intelligenz | Artificial intelligence | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis | Performance-Messung | Performance measurement |
-
Machine learning advances for time series forecasting
Masini, Ricardo P., (2020)
-
Machine learning advances for time series forecasting
Masini, Ricardo P., (2023)
-
Machine learning to predict grains futures prices
Brignoli, Paolo Libenzio, (2024)
- More ...
-
Investigating the accuracy of cross-learning time series forecasting methods
Semenoglou, Artemios-Anargyros, (2021)
-
Comparison of statistical and machine learning methods for daily SKU demand forecasting
Spiliotis, Evangelos, (2022)
-
Forecasting : theory and practice
Petropoulos, Fotios, (2022)
- More ...