Statistical properties of a kernel-type estimator of the intensity function of a cyclic Poisson process
We consider a kernel-type nonparametric estimator of the intensity function of a cyclic Poisson process when the period is unknown. We assume that only a single realization of the Poisson process is observed in a bounded window which expands in time. We compute the asymptotic bias, variance, and the mean-squared error of the estimator when the window indefinitely expands.
Year of publication: |
2005
|
---|---|
Authors: | Helmers, Roelof ; Mangku, I. Wayan ; Zitikis, Ricardas |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 92.2005, 1, p. 1-23
|
Publisher: |
Elsevier |
Keywords: | Poisson process Point process Intensity function Period Nonparametric estimation Consistency Bias Variance Mean-squared error |
Saved in:
Saved in favorites
Similar items by person
-
Consistent estimation of the intensity function of a cyclic Poisson process
Helmers, Roelof, (2003)
-
Predicting a cyclic Poisson process
Helmers, Roelof, (2012)
-
Estimation - On estimation of Poisson intensity functions
Helmers, Roelof, (1999)
- More ...