We consider optimal control problems for systems described by stochastic differential equations with delay. We state conditions for certain classes of such systems under which the stochastic control problems become finite-dimensional. These conditions are illustrated with three applications. First, we solve some linear quadratic problems with delay. Then we find the optimal consumption rate in a financial market with delay. Finally, we solve explicitly a deterministic fluid problem with delay which arises from admission control in ATM communication networks. Copyright Springer-Verlag 2005