Stochastic volatility models with ARMA innovations : an application to G7 inflation forecasts
Year of publication: |
2020
|
---|---|
Authors: | Zhang, Bo ; Chan, Joshua ; Cross, Jamie |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 36.2020, 4, p. 1318-1328
|
Subject: | Autoregressive moving average errors | Stochastic volatility | Inflation forecast | State space models | Unobserved components model | Zustandsraummodell | State space model | Prognoseverfahren | Forecasting model | Stochastischer Prozess | Stochastic process | Volatilität | Volatility | Zeitreihenanalyse | Time series analysis | Theorie | Theory | Inflation | ARMA-Modell | ARMA model | Inflationsrate | Inflation rate | Schätzung | Estimation |
-
Stochastic volatility models with ARMA innovations : an application to G7 inflation forecasts
Zhang, Bo, (2018)
-
Modeling tail risks of inflation using unobserved component quantile regressions
Pfarrhofer, Michael, (2022)
-
Mertens, Elmar, (2018)
- More ...
-
Stochastic Volatility Models with ARMA Innovations an Application to G7 Inflation Forecasts
Zhang, Bo, (2018)
-
Stochastic Volatility Models with ARMA Innovations : An Application to G7 Inflation Forecasts
Zhang, Bo, (2018)
-
Stochastic volatility models with ARMA innovations : an application to G7 inflation forecasts
Zhang, Bo, (2018)
- More ...