Stock market manipulation detection using feature modelling with hybrid recurrent neural networks
Sashank Sridhar, Siddartha Mootha
Year of publication: |
2022
|
---|---|
Authors: | Sridhar, Sashank ; Mootha, Siddartha |
Published in: |
International journal of networking and virtual organisations : IJNVO. - Geneva : Inderscience Enterprises, ISSN 1470-9503, ZDB-ID 2105494-0. - Vol. 26.2022, 1/2, p. 47-79
|
Subject: | ANNs | artificial neural networks | Bi-LSTM | bidirectional long short-term memory | ensemble learning | feature engineering | fraud detection | hybrid neural networks | long short-term memory | LSTM | manipulation detection | recurrent neural networks | RNNs | stacked generalisation | Neuronale Netze | Neural networks | Theorie | Theory | Prognoseverfahren | Forecasting model | Aktienmarkt | Stock market | Manipulation | Betrug | Fraud | Künstliche Intelligenz | Artificial intelligence |
Saved in:
Online Resource
Saved in favorites
Similar items by subject
-
Zughoul, Basem, (2023)
-
Maniatopoulos, Andreas, (2023)
-
Machine learning for predicting stock return volatility
Filipović, Damir, (2021)
- More ...