Strong metric (sub)regularity of Karush-Kuhn-Tucker mappings for piecewise linear-quadratic convex-composite optimization and the quadratic convergence of Newton's method
Year of publication: |
2020
|
---|---|
Authors: | Burke, James V. ; Engle, Abraham |
Published in: |
Mathematics of operations research. - Catonsville, MD : INFORMS, ISSN 0364-765X, ZDB-ID 195683-8. - Vol. 45.2020, 3, p. 1164-1192
|
Subject: | convex-composite optimization | generalized equations | Newton's method | quasi-Newton methods | partial smoothness | piecewise linear-quadratic | strong metric subregularity | strong metric regularity | quadratic convergence | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Nichtlineare Optimierung | Nonlinear programming | Wirtschaftliche Konvergenz | Economic convergence |
-
A second-order convergence aufmented Lagrangian method using non-quadratic penalty functions
Sánchez, M. D., (2019)
-
On the design of R-based scalable frameworks for data science applications
Theußl, Stefan Peter, (2020)
-
JSOSuite.jl : solving continuous optimization problems with JuliaSmoothOptimizers
Migot, Tangi, (2024)
- More ...
-
Burke, James V., (1998)
-
A relative weighting method for estimating parameters and variances in multiple data sets
Bell, Bradley M., (1996)
-
Variational Analysis of the Abscissa Mapping for Polynomials via the Gauss-Lucas Theorem
Burke, James V., (2004)
- More ...