Support Vector Machine (SVM) as a multivariate statistical technique for the assessment of credit risk : a comparison with classical techniques as linear discriminant analysis and logit based on Deutsche Bundesbank data
Year of publication: |
2010
|
---|---|
Authors: | Fassbender, Martin ; Auria, Laura |
Published in: |
30 Jahre Fachhochschule der Deutschen Bundesbank : Festschrift. - Frankfurt, M. : Dt. Bundesbank, ISBN 978-3-86558-581-3. - 2010, p. 375-396
|
Subject: | Kreditrisiko | Credit risk | Mustererkennung | Pattern recognition | Multivariate Analyse | Multivariate analysis | Statistische Methode | Statistical method |
-
Risk measurement : from quantitative measures to management decisions
Guégan, Dominique, (2019)
-
Identifying hidden patterns in credit risk survival data using Generalised Additive Models
Djeundje, Viani Biatat, (2019)
-
Risk Measurement : From Quantitative Measures to Management Decisions
Guégan, Dominique, (2019)
- More ...
-
Fassbender, Martin, (1905)
-
Auria, Laura, (1997)
-
Auria, Laura, (1997)
- More ...