Targeted Twitter sentiment analysis for brands using supervised feature engineering and the dynamic architecture for artificial neural networks
Year of publication: |
2016
|
---|---|
Authors: | Ghiassi, Manoochehr ; Zimbra, David ; Lee, Sean |
Published in: |
Journal of management information systems : JMIS. - Philadelphia, PA : Taylor & Francis Group, LLC, ISSN 0742-1222, ZDB-ID 883127-0. - Vol. 33.2016, 4, p. 1034-1058
|
Subject: | artificial neural networks | feature engineering | sentiment analysis | social media | supervised feature engineering | Twitter | Social Web | Social web | Neuronale Netze | Neural networks | Emotion | Künstliche Intelligenz | Artificial intelligence |
-
Machine learning approaches to sentiment analysis in online social networks
Mallick, Chandrakant, (2023)
-
Discovering flamenco show audience tourists' profile : sentiment analysis, opinions and attitudes
García-García, Lucía, (2024)
-
Mining netizen's opinion on cryptocurrency : sentiment analysis of Twitter data
Hassan, M. Kabir, (2022)
- More ...
-
Benjamin, Victor, (2014)
-
Detecting Fake Websites: The Contribution of Statistical Learning Theory
Abbasi, Ahmed, (2010)
-
Movie Aspects, Tweet Metrics, and Movie Revenues : The Influence of iOS vs. Android
Zimbra, David, (2017)
- More ...