Technical note: on the convergence rate of stochastic approximation for gradient-based stochastic optimization
| Alternative title: | On the convergence rate of stochastic approximation for gradient-based stochastic optimization |
|---|---|
| Year of publication: |
2025
|
| Authors: | Hu, Jiaqiao ; Fu, Michael |
| Published in: |
Operations research. - Linthicum, Md. : INFORMS, ISSN 1526-5463, ZDB-ID 2019440-7. - Vol. 73.2025, 2, p. 1143-1150
|
| Subject: | Simulation | convergence rate | stochastic approximation | finite differences | finite-time analysis | random directions | simultaneous perturbation | Stochastischer Prozess | Stochastic process | Mathematische Optimierung | Mathematical programming | Schätztheorie | Estimation theory | Markov-Kette | Markov chain |
-
Quantile optimization via multiple-timescale local search for black-box functions
Hu, Jiaqiao, (2025)
-
A stochastic approximation method for simulation-based quantile optimization
Hu, Jiaqiao, (2022)
-
A policy gradient algorithm for the risk-sensitive exponential cost MDP
Moharrami, Mehrdad, (2025)
- More ...
-
Generalized likelihood ratio method for stochastic models with uniform random numbers as inputs
Peng, Yijie, (2025)
-
Quantile optimization via multiple-timescale local search for black-box functions
Hu, Jiaqiao, (2025)
-
Peng, Yijie, (2022)
- More ...