Testing quasi-independence for truncation data
Quasi-independence is a common assumption for analyzing truncated data. To verify this condition, we propose a class of weighted log-rank type statistics that include existing tests proposed by Tsai (1990) and Martin and Betensky (2005) as special cases. To choose an appropriate weight function that may lead to a more power test, we derive a score test when the dependence structure under the alternative hypothesis is modeled via the odds ratio function proposed by Chaieb, Rivest and Abdous (2006). Asymptotic properties of the proposed tests are established based on the functional delta method which can handle more general situations than results based on rank-statistics or U-statistics. Extension of the proposed methodology under two different censoring settings is also discussed. Simulations are performed to examine finite-sample performances of the proposed method and its competitors. Two datasets are analyzed for illustrative purposes.
Year of publication: |
2010
|
---|---|
Authors: | Emura, Takeshi ; Wang, Weijing |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 101.2010, 1, p. 223-239
|
Publisher: |
Elsevier |
Keywords: | Conditional likelihood Kendall's tau Mantel-Haenszel test Power Right-censoring Survival data Two-by-two table |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Testing Quasi-independence for Truncation Data
Emura, Takeshi, (2009)
-
Testing Quasi-independence for Truncation Data
Emura, Takeshi, (2009)
-
Comments on: Inference in multivariate Archimedean copula models
Wang, Weijing, (2011)
- More ...