Textual Factors : A Scalable, Interpretable, and Data-driven Approach to Analyzing Unstructured Information
Year of publication: |
2019
|
---|---|
Authors: | Cong, Lin William ; Liang, Tengyuan ; Zhang, Xiao |
Publisher: |
[2019]: [S.l.] : SSRN |
Subject: | Informationsmanagement | Information management | Data Mining | Data mining | Text | Betriebliches Informationssystem | Business intelligence system |
Extent: | 1 Online-Ressource (65 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments September 1, 2019 erstellt |
Other identifiers: | 10.2139/ssrn.3307057 [DOI] |
Classification: | c55 ; C80 - Data Collection and Data Estimation Methodology; Computer Programs. General ; G10 - General Financial Markets. General |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Case, Megan, (2022)
-
Rybinski, Krzysztof, (2014)
-
Comparing SQL and NoSQL approaches for clustering over big data
Assunção, Filipe, (2015)
- More ...
-
Cong, Lin William, (2024)
-
Analyzing textual information at scale
Cong, Lin William, (2021)
-
Halperin, Igor, (2022)
- More ...