The Benefit of Using Random Matrix Theory to Fit High-Dimensional T-Copulas
Year of publication: |
2016
|
---|---|
Authors: | Xu, Jiali |
Other Persons: | Brin, Loïc (contributor) |
Publisher: |
[2016]: [S.l.] : SSRN |
Subject: | Theorie | Theory | Lineare Algebra | Linear algebra |
Extent: | 1 Online-Ressource (19 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments March 17, 2016 erstellt |
Other identifiers: | 10.2139/ssrn.2749188 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Introduction to Mathematics for Economics with R
Porto, Massimiliano, (2022)
-
Intuitive mathematical economics series : linear algebra techniques to measure business cycles
Marinozzi, Tomás, (2021)
-
Minimum-cost portfolio insurance
Aliprantis, Charalambos D., (2000)
- More ...
-
Unsupervised Learning Applied to the Grouped t-Copula or the Modeling of Real-Life Dependence
Brin, Loïc, (2018)
-
The benefit of using random matrix theory to fit high-dimensional t-copulas
Xu, Jiali, (2016)
-
Financial Applications of Gaussian Processes and Bayesian Optimization
Gonzalvez, Joan, (2019)
- More ...