The extraction of early warning features for predicting financial distress based on XGBoost model and shap framework
Year of publication: |
2021
|
---|---|
Authors: | Yang, He ; Li, Emma ; Cai, Yi Fang ; Li, Jiapei ; Yuan, George |
Published in: |
International journal of financial engineering. - New Jersey : World Scientific, ISSN 2424-7863, ZDB-ID 2832504-7. - Vol. 8.2021, 3, p. 1-24
|
Subject: | AUC and KS testing | early-warning feature | Financial distress | machine learning | SHAP framework | XGBoost | Prognoseverfahren | Forecasting model | Insolvenz | Insolvency | Frühwarnsystem | Early warning system | Künstliche Intelligenz | Artificial intelligence | Betriebliche Liquidität | Corporate liquidity |
-
Anticipating bank distress in the Eurozone : an Extreme Gradient Boosting approach
Climent Diranzo, Francisco J., (2019)
-
Predicting failure in the US banking sector : an extreme gradient boosting approach
Carmona, Pedro, (2019)
-
Corporate financial distress prediction in a transition economy
Nguyen, Bang, (2024)
- More ...
-
Li, Jiapei, (2024)
-
He, Yang, (2023)
-
The impact of intensive farming on land tenure : evidence from Confucius' manors ; 1759 - 1901
Yang, He, (2014)
- More ...