The use of the generalized extended to the limit sparse factorization techniques for the solution of non-linear elliptic and parabolic difference equations
Generalized Extended to the Limit LU sparse factorization procedures for the solution of large sparse unsymmetric linear systems of irregular and unsymmetric structure are presented. Composite “inner-outer” iterative schemes incorporating these procedures are introduced for solving non-linear elliptic and parabolic difference equations. Applications of the methods on non-linear boundary-value problems are discussed and numerical results are given.