The identification of time-invariant variables in panel data model : exploring the role of science in firms' productivity
Year of publication: |
November 2022
|
---|---|
Authors: | Amoroso, Sara ; Bruno, Randolph ; Magazzini, Laura |
Publisher: |
Bonn, Germany : IZA - Institute of Labor Economics |
Subject: | panel data | time-invariant variables | science | productivity | R&D | Panel | Panel study | Produktivität | Productivity | Theorie | Theory |
-
Amoroso, Sara, (2022)
-
Amoroso, Sara, (2022)
-
Bayesian treatments for panel data stochastic frontier models with time varying heterogeneity
Liu, Junrong, (2017)
- More ...
-
Amoroso, Sara, (2022)
-
Exploiting Information from Singletons in Panel Data Analysis : A GMM Approach
Bruno, Randolph, (2019)
-
Exploiting information from singletons in panel data analysis : a GMM approach
Bruno, Randolph, (2019)
- More ...