The impact of renewable energy on inflation in G7 economies : evidence from artificial neural networks and machine learning methods
| Year of publication: |
2024
|
|---|---|
| Authors: | Zhang, Long ; Padhan, Hemachandra ; Singh, Sanjay Kumar ; Gupta, Monika |
| Published in: |
Energy economics. - Amsterdam [u.a.] : Elsevier Science, ISSN 1873-6181, ZDB-ID 2000893-4. - Vol. 136.2024, Art.-No. 107718, p. 1-12
|
| Subject: | Artificial neural network | Energy prices | Energy transition | Inflation rates | Machine learning methods | Renewable energy | Neuronale Netze | Neural networks | Künstliche Intelligenz | Artificial intelligence | Erneuerbare Energie | Inflation | Energiepreis | Energy price | Inflationsrate | Inflation rate | Prognoseverfahren | Forecasting model | Energiemarkt | Energy market | Förderung erneuerbarer Energien | Renewable energy policy |
-
Forecasting energy prices using machine learning algorithms : a comparative analysis
Mirindi, Frédéric, (2025)
-
Electricity price forecasting with neural networks on EPEX order books
Schnürch, Simon, (2020)
-
Navigating inflation challenges : AI-based portfolio management insights
Bareith, Tibor, (2024)
- More ...
-
Gupta, Monika, (2019)
-
Role of leadership in knowledge management: a study
Singh, Sanjay K., (2008)
-
Singh, Sanjay K., (2006)
- More ...