The Maximization of a Quadratic Function of Variables Subject to Linear Inequalities
A simplex-type method for finding a local maximum of <disp-formula><tex-math><![CDATA[$$Z = c + c\lambda^{\prime} + \lambda C\lambda^{\prime} \qquad a\ \max \eqno (1)$$]]></tex-math></disp-formula> subject to <disp-formula><tex-math><![CDATA[$$\lambda \geqq 0 \eqno (2)$$]]></tex-math></disp-formula> and <disp-formula><tex-math><![CDATA[$$A\lambda^{\prime} = \hbox{b}^{\prime} \eqno (3)$$]]></tex-math></disp-formula> is proposed. At a local maximum, the objective function (1), can be expressed, in terms of the non-basic variables \lambda<sub>0</sub>, as <disp-formula><tex-math><![CDATA[$$Z = \alpha + \beta\lambda_0^{\prime} + \lambda_0\gamma\lambda_0^{\prime} \eqno (13)$$]]></tex-math></disp-formula> and the vector of partial derivatives of (13), with respect to the non-basic variables may be written, <disp-formula><tex-math><![CDATA[$$\nabla {\bf Z} = \beta + 2\lambda_0\gamma;\qquad \beta \geqq 0$$]]></tex-math></disp-formula> This allows calculation of the maximum values of the non-basic variables, increased one at a time, consistent with \nabla Z \geqq 0. A "cutting plane" a' \lambda' \geqq 1 is then defined which excludes the local optimum, and many lower values (but no higher values) of (1). The form of the square matrix C is immaterial.
Year of publication: |
1964
|
---|---|
Authors: | Candler, Wilfred ; Townsley, Robert J. |
Published in: |
Management Science. - Institute for Operations Research and the Management Sciences - INFORMS, ISSN 0025-1909. - Vol. 10.1964, 3, p. 515-523
|
Publisher: |
Institute for Operations Research and the Management Sciences - INFORMS |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
The maximization of a quadratic function of variables subject to linear inequalities
Candler, Wilfred, (1964)
-
Maughan, C. William, (1999)
-
Maughan, Charles William, (1999)
- More ...