The nested Sinkhorn divergence to learn the nested distance
Year of publication: |
2021
|
---|---|
Authors: | Pichler, Alois ; Weinhardt, Michael |
Published in: |
Computational Management Science. - Berlin, Heidelberg : Springer, ISSN 1619-6988. - Vol. 19.2021, 2, p. 269-293
|
Publisher: |
Berlin, Heidelberg : Springer |
Subject: | Nested distance | Optimal transport | Sinkhorn divergence | Entropy |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Article |
Language: | English |
Other identifiers: | 10.1007/s10287-021-00415-7 [DOI] |
Classification: | c08 ; C15 - Statistical Simulation Methods; Monte Carlo Methods ; g07 |
Source: |
-
The nested Sinkhorn divergence to learn the nested distance
Pichler, Alois, (2022)
-
Computation of Cournot-Nash equilibria by entropic regularization
Blanchet, Adrien, (2017)
-
Probability forecast combination via entropy regularized Wasserstein distance
Cumings-Menon, Ryan, (2020)
- More ...
-
The nested Sinkhorn divergence to learn the nested distance
Pichler, Alois, (2022)
-
SOEP-LEE Betriebsbefragung : Datenhandbuch der Betriebsbefragung des Sozio-oekonomischen Panels
Weinhardt, Michael, (2016)
-
Connection between higher order measures of risk and stochastic dominance
Pichler, Alois, (2024)
- More ...