The weak convergence rate of two semi-exact discretization schemes for the Heston model
Year of publication: |
2021
|
---|---|
Authors: | Mickel, Annalena ; Neuenkirch, Andreas |
Subject: | discretization schemes for SDEs | exact simulation of the CIR process | Heston model | Kolmogorov PDE | Malliavin calculus | Stochastischer Prozess | Stochastic process | Optionspreistheorie | Option pricing theory | Volatilität | Volatility | Simulation |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/risks9010023 [DOI] hdl:10419/258113 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
The weak convergence rate of two semi-exact discretization schemes for the Heston model
Mickel, Annalena, (2021)
-
Fast and Accurate Long Stepping Simulation of the Heston Stochastic Volatility Model
Chan, Jiun Hong, (2010)
-
An efficient semi-analytical simulation for the Heston model
Sun, Xianming, (2014)
- More ...
-
The weak convergence rate of two semi-exact discretization schemes for the Heston model
Mickel, Annalena, (2021)
-
Sharp L¹-approximation of the log-Heston stochastic differential equation by Euler-type methods
Mickel, Annalena, (2023)
-
Sharp L¹-approximation of the log-Heston stochastic differential equation by Euler-type methods
Mickel, Annalena, (2023)
- More ...