Tourism demand forecasting : a decomposed deep learning approach
Year of publication: |
2021
|
---|---|
Authors: | Zhang, Yishuo ; Li, Gang ; Muskat, Birgit ; Law, Rob |
Subject: | AI-based forecasting | decomposing method | deep learning | overfitting | tourism demand forecasting | tourism planning | Tourismus | Tourism | Prognoseverfahren | Forecasting model | Nachfrage | Demand | Tourismuspolitik | Tourism policy | Künstliche Intelligenz | Artificial intelligence | Tourismuswirtschaft | Tourism industry |
-
The challenge of regional tourism demand forecasting : the case of China
Zhou-Grundy, Yvonne, (2014)
-
Fine-grained tourism demand forecasting : a decomposition ensemble deep learning model
Bi, Jian-Wu, (2023)
-
Bi, Jian-Wu, (2022)
- More ...
-
Predictivity of Tourism Demand Data
Zhang, Yishuo, (2021)
-
Improving the Resident–Tourist Relationship in Urban Hotspots
Vu, Quan, (2021)
-
Vu, Huy Quan, (2023)
- More ...