Tourism demand forecasting : a deep learning model based on spatial-temporal transformer
Year of publication: |
2025
|
---|---|
Authors: | Chen, Jiaying ; Li, Cheng ; Huang, Liyao ; Zheng, Weimin |
Published in: |
Tourism review. - Bingley : Emerald, ISSN 1759-8451, ZDB-ID 2412174-5. - Vol. 80.2025, 3, p. 648-663
|
Subject: | Tourist demand prediction | Dynamic spatial effects | Deep learning model | Transformer | Prognoseverfahren | Forecasting model | Nachfrage | Demand | Tourismus | Tourism | Theorie | Theory | Lernprozess | Learning process | Künstliche Intelligenz | Artificial intelligence | Tourismuswirtschaft | Tourism industry | Urlaubsverhalten | Holiday behaviour |
-
Tourism demand forecasting : an interpretable deep learning model
Huang, Liyao, (2024)
-
Fine-grained tourism demand forecasting : a decomposition ensemble deep learning model
Bi, Jian-Wu, (2023)
-
Pooling in tourism demand forecasting
Long, Wenjin, (2019)
- More ...
-
Daily hotel demand forecasting with spatiotemporal features
Huang, Liyao, (2023)
-
Hotel demand forecasting : a comprehensive literature review
Huang, Liyao, (2023)
-
Novel deep learning approach for forecasting daily hotel demand with agglomeration effect
Huang, Liyao, (2021)
- More ...