Tourism demand forecasting : an interpretable deep learning model
Year of publication: |
2024
|
---|---|
Authors: | Huang, Liyao ; Zheng, Weimin ; Deng, Zuohua |
Published in: |
Tourism analysis : an interdisciplinary tourism & hospitality journal. - [Elmsford, NY] : Cognizant Communication Corporation, ISSN 1943-3999, ZDB-ID 2267000-2. - Vol. 29.2024, 4, p. 465-479
|
Subject: | INTERPRETABLE DEEP LEARNING FRAMEWORK | LONG SHORT-TERM MEMORY | SHAPLEY ADDITIVE INTERPRETATION | TOURISM DEMAND FORECASTING | Tourismus | Tourism | Prognoseverfahren | Forecasting model | Theorie | Theory | Nachfrage | Demand | Lernprozess | Learning process | Urlaubsverhalten | Holiday behaviour | Tourismuswirtschaft | Tourism industry |
-
Fan, Guo-Feng, (2022)
-
Gunter, Ulrich, (2015)
-
Pooling in tourism demand forecasting
Long, Wenjin, (2019)
- More ...
-
Hotel demand forecasting : a comprehensive literature review
Huang, Liyao, (2023)
-
Novel deep learning approach for forecasting daily hotel demand with agglomeration effect
Huang, Liyao, (2021)
-
Daily hotel demand forecasting with spatiotemporal features
Huang, Liyao, (2023)
- More ...