Trading and non-trading period realized market volatility : does it matter for forecasting the volatility of US stocks?
Year of publication: |
2020
|
---|---|
Authors: | Lyócsa, Štefan ; Todorova, Neda |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 36.2020, 2, p. 628-645
|
Subject: | High frequency data | Realized volatility | Overnight volatility | Forecasting | Market risk | Volatilität | Volatility | Prognoseverfahren | Forecasting model | ARCH-Modell | ARCH model | Zeitreihenanalyse | Time series analysis | Theorie | Theory | Börsenkurs | Share price | Schätzung | Estimation | USA | United States |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Notes: | Erratum enthalten in: International journal of forecasting, Volume 37, issue 3 (July/September 2021), Seite 1310-1311 |
Other identifiers: | 10.1016/j.ijforecast.2019.08.002 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Jayawardena, Nirodha I., (2016)
-
Nunkoo, Houmera Bibi Sabera, (2022)
-
Stock market volatility forecasting : do we need high-frequency data?
Lyócsa, Štefan, (2021)
- More ...
-
What drives volatility of the US oil and gas firms?
Lyócsa, Štefan, (2021)
-
Volatility forecasting of non-ferrous metal futures : covariances, covariates or combinations?
Lyócsa, Štefan, (2017)
-
Forecasting of clean energy market volatility : the role of oil and the technology sector
Lyócsa, Štefan, (2024)
- More ...